3.213 \(\int \frac{(d+c^2 d x^2)^2 (a+b \sinh ^{-1}(c x))^2}{x^2} \, dx\)

Optimal. Leaf size=229 \[ -2 b^2 c d^2 \text{PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )+2 b^2 c d^2 \text{PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )+\frac{4}{3} c^2 d^2 x \left (c^2 x^2+1\right ) \left (a+b \sinh ^{-1}(c x)\right )^2-\frac{2}{9} b c d^2 \left (c^2 x^2+1\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{10}{3} b c d^2 \sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )-\frac{d^2 \left (c^2 x^2+1\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{x}+\frac{8}{3} c^2 d^2 x \left (a+b \sinh ^{-1}(c x)\right )^2-4 b c d^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )+\frac{2}{27} b^2 c^4 d^2 x^3+\frac{32}{9} b^2 c^2 d^2 x \]

[Out]

(32*b^2*c^2*d^2*x)/9 + (2*b^2*c^4*d^2*x^3)/27 - (10*b*c*d^2*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x]))/3 - (2*b*c
*d^2*(1 + c^2*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/9 + (8*c^2*d^2*x*(a + b*ArcSinh[c*x])^2)/3 + (4*c^2*d^2*x*(1 +
c^2*x^2)*(a + b*ArcSinh[c*x])^2)/3 - (d^2*(1 + c^2*x^2)^2*(a + b*ArcSinh[c*x])^2)/x - 4*b*c*d^2*(a + b*ArcSinh
[c*x])*ArcTanh[E^ArcSinh[c*x]] - 2*b^2*c*d^2*PolyLog[2, -E^ArcSinh[c*x]] + 2*b^2*c*d^2*PolyLog[2, E^ArcSinh[c*
x]]

________________________________________________________________________________________

Rubi [A]  time = 0.522505, antiderivative size = 229, normalized size of antiderivative = 1., number of steps used = 17, number of rules used = 11, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.423, Rules used = {5739, 5684, 5653, 5717, 8, 5744, 5742, 5760, 4182, 2279, 2391} \[ -2 b^2 c d^2 \text{PolyLog}\left (2,-e^{\sinh ^{-1}(c x)}\right )+2 b^2 c d^2 \text{PolyLog}\left (2,e^{\sinh ^{-1}(c x)}\right )+\frac{4}{3} c^2 d^2 x \left (c^2 x^2+1\right ) \left (a+b \sinh ^{-1}(c x)\right )^2-\frac{2}{9} b c d^2 \left (c^2 x^2+1\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{10}{3} b c d^2 \sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )-\frac{d^2 \left (c^2 x^2+1\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{x}+\frac{8}{3} c^2 d^2 x \left (a+b \sinh ^{-1}(c x)\right )^2-4 b c d^2 \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right ) \left (a+b \sinh ^{-1}(c x)\right )+\frac{2}{27} b^2 c^4 d^2 x^3+\frac{32}{9} b^2 c^2 d^2 x \]

Antiderivative was successfully verified.

[In]

Int[((d + c^2*d*x^2)^2*(a + b*ArcSinh[c*x])^2)/x^2,x]

[Out]

(32*b^2*c^2*d^2*x)/9 + (2*b^2*c^4*d^2*x^3)/27 - (10*b*c*d^2*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x]))/3 - (2*b*c
*d^2*(1 + c^2*x^2)^(3/2)*(a + b*ArcSinh[c*x]))/9 + (8*c^2*d^2*x*(a + b*ArcSinh[c*x])^2)/3 + (4*c^2*d^2*x*(1 +
c^2*x^2)*(a + b*ArcSinh[c*x])^2)/3 - (d^2*(1 + c^2*x^2)^2*(a + b*ArcSinh[c*x])^2)/x - 4*b*c*d^2*(a + b*ArcSinh
[c*x])*ArcTanh[E^ArcSinh[c*x]] - 2*b^2*c*d^2*PolyLog[2, -E^ArcSinh[c*x]] + 2*b^2*c*d^2*PolyLog[2, E^ArcSinh[c*
x]]

Rule 5739

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n)/(f*(m + 1)), x] + (-Dist[(2*e*p)/(f^2*(m + 1)), Int[(f*x
)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p
])/(f*(m + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n -
1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]

Rule 5684

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(x*(d + e*x^2)^p*
(a + b*ArcSinh[c*x])^n)/(2*p + 1), x] + (Dist[(2*d*p)/(2*p + 1), Int[(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^
n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/((2*p + 1)*(1 + c^2*x^2)^FracPart[p]), Int[x*(1
+ c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && Gt
Q[n, 0] && GtQ[p, 0]

Rule 5653

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5717

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)
^(p + 1)*(a + b*ArcSinh[c*x])^n)/(2*e*(p + 1)), x] - Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p +
 1)*(1 + c^2*x^2)^FracPart[p]), Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a,
b, c, d, e, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 5744

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n)/(f*(m + 2*p + 1)), x] + (Dist[(2*d*p)/(m + 2*p + 1), Int
[(f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x^2)^FracPart[p]
)/(f*(m + 2*p + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^
(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] &&  !LtQ[m, -1]
 && (RationalQ[m] || EqQ[n, 1])

Rule 5742

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
(f*x)^(m + 1)*Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n)/(f*(m + 2)), x] + (Dist[Sqrt[d + e*x^2]/((m + 2)*Sqrt[1
+ c^2*x^2]), Int[((f*x)^m*(a + b*ArcSinh[c*x])^n)/Sqrt[1 + c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(f*
(m + 2)*Sqrt[1 + c^2*x^2]), Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f
, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] &&  !LtQ[m, -1] && (RationalQ[m] || EqQ[n, 1])

Rule 5760

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[1/(c^(m
 + 1)*Sqrt[d]), Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[
e, c^2*d] && GtQ[d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{\left (d+c^2 d x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{x^2} \, dx &=-\frac{d^2 \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{x}+\left (4 c^2 d\right ) \int \left (d+c^2 d x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2 \, dx+\left (2 b c d^2\right ) \int \frac{\left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )}{x} \, dx\\ &=\frac{2}{3} b c d^2 \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{4}{3} c^2 d^2 x \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2-\frac{d^2 \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{x}+\left (2 b c d^2\right ) \int \frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{x} \, dx+\frac{1}{3} \left (8 c^2 d^2\right ) \int \left (a+b \sinh ^{-1}(c x)\right )^2 \, dx-\frac{1}{3} \left (2 b^2 c^2 d^2\right ) \int \left (1+c^2 x^2\right ) \, dx-\frac{1}{3} \left (8 b c^3 d^2\right ) \int x \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx\\ &=-\frac{2}{3} b^2 c^2 d^2 x-\frac{2}{9} b^2 c^4 d^2 x^3+2 b c d^2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{2}{9} b c d^2 \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{8}{3} c^2 d^2 x \left (a+b \sinh ^{-1}(c x)\right )^2+\frac{4}{3} c^2 d^2 x \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2-\frac{d^2 \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{x}+\left (2 b c d^2\right ) \int \frac{a+b \sinh ^{-1}(c x)}{x \sqrt{1+c^2 x^2}} \, dx+\frac{1}{9} \left (8 b^2 c^2 d^2\right ) \int \left (1+c^2 x^2\right ) \, dx-\left (2 b^2 c^2 d^2\right ) \int 1 \, dx-\frac{1}{3} \left (16 b c^3 d^2\right ) \int \frac{x \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt{1+c^2 x^2}} \, dx\\ &=-\frac{16}{9} b^2 c^2 d^2 x+\frac{2}{27} b^2 c^4 d^2 x^3-\frac{10}{3} b c d^2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{2}{9} b c d^2 \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{8}{3} c^2 d^2 x \left (a+b \sinh ^{-1}(c x)\right )^2+\frac{4}{3} c^2 d^2 x \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2-\frac{d^2 \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{x}+\left (2 b c d^2\right ) \operatorname{Subst}\left (\int (a+b x) \text{csch}(x) \, dx,x,\sinh ^{-1}(c x)\right )+\frac{1}{3} \left (16 b^2 c^2 d^2\right ) \int 1 \, dx\\ &=\frac{32}{9} b^2 c^2 d^2 x+\frac{2}{27} b^2 c^4 d^2 x^3-\frac{10}{3} b c d^2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{2}{9} b c d^2 \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{8}{3} c^2 d^2 x \left (a+b \sinh ^{-1}(c x)\right )^2+\frac{4}{3} c^2 d^2 x \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2-\frac{d^2 \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{x}-4 b c d^2 \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )-\left (2 b^2 c d^2\right ) \operatorname{Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )+\left (2 b^2 c d^2\right ) \operatorname{Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\sinh ^{-1}(c x)\right )\\ &=\frac{32}{9} b^2 c^2 d^2 x+\frac{2}{27} b^2 c^4 d^2 x^3-\frac{10}{3} b c d^2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{2}{9} b c d^2 \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{8}{3} c^2 d^2 x \left (a+b \sinh ^{-1}(c x)\right )^2+\frac{4}{3} c^2 d^2 x \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2-\frac{d^2 \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{x}-4 b c d^2 \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )-\left (2 b^2 c d^2\right ) \operatorname{Subst}\left (\int \frac{\log (1-x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )+\left (2 b^2 c d^2\right ) \operatorname{Subst}\left (\int \frac{\log (1+x)}{x} \, dx,x,e^{\sinh ^{-1}(c x)}\right )\\ &=\frac{32}{9} b^2 c^2 d^2 x+\frac{2}{27} b^2 c^4 d^2 x^3-\frac{10}{3} b c d^2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )-\frac{2}{9} b c d^2 \left (1+c^2 x^2\right )^{3/2} \left (a+b \sinh ^{-1}(c x)\right )+\frac{8}{3} c^2 d^2 x \left (a+b \sinh ^{-1}(c x)\right )^2+\frac{4}{3} c^2 d^2 x \left (1+c^2 x^2\right ) \left (a+b \sinh ^{-1}(c x)\right )^2-\frac{d^2 \left (1+c^2 x^2\right )^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{x}-4 b c d^2 \left (a+b \sinh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\sinh ^{-1}(c x)}\right )-2 b^2 c d^2 \text{Li}_2\left (-e^{\sinh ^{-1}(c x)}\right )+2 b^2 c d^2 \text{Li}_2\left (e^{\sinh ^{-1}(c x)}\right )\\ \end{align*}

Mathematica [A]  time = 1.15082, size = 306, normalized size = 1.34 \[ \frac{1}{54} d^2 \left (108 b^2 c \text{PolyLog}\left (2,-e^{-\sinh ^{-1}(c x)}\right )-108 b^2 c \text{PolyLog}\left (2,e^{-\sinh ^{-1}(c x)}\right )+18 a^2 c^4 x^3+108 a^2 c^2 x-\frac{54 a^2}{x}-12 a b c \left (c^2 x^2-2\right ) \sqrt{c^2 x^2+1}+36 a b c^4 x^3 \sinh ^{-1}(c x)+216 a b c \left (c x \sinh ^{-1}(c x)-\sqrt{c^2 x^2+1}\right )-\frac{108 a b \left (c x \tanh ^{-1}\left (\sqrt{c^2 x^2+1}\right )+\sinh ^{-1}(c x)\right )}{x}+2 b^2 c^2 x \left (2 c^2 x^2+9 c^2 x^2 \sinh ^{-1}(c x)^2-12\right )-189 b^2 c \sqrt{c^2 x^2+1} \sinh ^{-1}(c x)+108 b^2 c^2 x \left (\sinh ^{-1}(c x)^2+2\right )-\frac{54 b^2 \sinh ^{-1}(c x) \left (\sinh ^{-1}(c x)+2 c x \left (\log \left (e^{-\sinh ^{-1}(c x)}+1\right )-\log \left (1-e^{-\sinh ^{-1}(c x)}\right )\right )\right )}{x}-3 b^2 c \sinh ^{-1}(c x) \cosh \left (3 \sinh ^{-1}(c x)\right )\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d + c^2*d*x^2)^2*(a + b*ArcSinh[c*x])^2)/x^2,x]

[Out]

(d^2*((-54*a^2)/x + 108*a^2*c^2*x + 18*a^2*c^4*x^3 - 12*a*b*c*(-2 + c^2*x^2)*Sqrt[1 + c^2*x^2] + 36*a*b*c^4*x^
3*ArcSinh[c*x] - 189*b^2*c*Sqrt[1 + c^2*x^2]*ArcSinh[c*x] + 216*a*b*c*(-Sqrt[1 + c^2*x^2] + c*x*ArcSinh[c*x])
+ 108*b^2*c^2*x*(2 + ArcSinh[c*x]^2) + 2*b^2*c^2*x*(-12 + 2*c^2*x^2 + 9*c^2*x^2*ArcSinh[c*x]^2) - (108*a*b*(Ar
cSinh[c*x] + c*x*ArcTanh[Sqrt[1 + c^2*x^2]]))/x - 3*b^2*c*ArcSinh[c*x]*Cosh[3*ArcSinh[c*x]] - (54*b^2*ArcSinh[
c*x]*(ArcSinh[c*x] + 2*c*x*(-Log[1 - E^(-ArcSinh[c*x])] + Log[1 + E^(-ArcSinh[c*x])])))/x + 108*b^2*c*PolyLog[
2, -E^(-ArcSinh[c*x])] - 108*b^2*c*PolyLog[2, E^(-ArcSinh[c*x])]))/54

________________________________________________________________________________________

Maple [A]  time = 0.134, size = 400, normalized size = 1.8 \begin{align*}{\frac{{d}^{2}{a}^{2}{c}^{4}{x}^{3}}{3}}+2\,{d}^{2}{a}^{2}{c}^{2}x-{\frac{{d}^{2}{a}^{2}}{x}}+{\frac{32\,{b}^{2}{c}^{2}{d}^{2}x}{9}}+{\frac{2\,{b}^{2}{c}^{4}{d}^{2}{x}^{3}}{27}}+2\,{b}^{2}c{d}^{2}{\it polylog} \left ( 2,cx+\sqrt{{c}^{2}{x}^{2}+1} \right ) -2\,{b}^{2}c{d}^{2}{\it polylog} \left ( 2,-cx-\sqrt{{c}^{2}{x}^{2}+1} \right ) +{\frac{{d}^{2}{b}^{2} \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}{c}^{4}{x}^{3}}{3}}+2\,{d}^{2}{b}^{2} \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}{c}^{2}x-{\frac{32\,{d}^{2}{b}^{2}c{\it Arcsinh} \left ( cx \right ) }{9}\sqrt{{c}^{2}{x}^{2}+1}}+2\,c{d}^{2}{b}^{2}{\it Arcsinh} \left ( cx \right ) \ln \left ( 1-cx-\sqrt{{c}^{2}{x}^{2}+1} \right ) -{\frac{{d}^{2}{b}^{2} \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}}{x}}-2\,c{d}^{2}{b}^{2}{\it Arcsinh} \left ( cx \right ) \ln \left ( 1+cx+\sqrt{{c}^{2}{x}^{2}+1} \right ) -{\frac{2\,{d}^{2}{b}^{2}{\it Arcsinh} \left ( cx \right ){c}^{3}{x}^{2}}{9}\sqrt{{c}^{2}{x}^{2}+1}}+{\frac{2\,{d}^{2}ab{\it Arcsinh} \left ( cx \right ){c}^{4}{x}^{3}}{3}}+4\,{d}^{2}ab{\it Arcsinh} \left ( cx \right ){c}^{2}x-2\,{\frac{{d}^{2}ab{\it Arcsinh} \left ( cx \right ) }{x}}-{\frac{2\,{d}^{2}ab{c}^{3}{x}^{2}}{9}\sqrt{{c}^{2}{x}^{2}+1}}-{\frac{32\,c{d}^{2}ab}{9}\sqrt{{c}^{2}{x}^{2}+1}}-2\,c{d}^{2}ab{\it Artanh} \left ({\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c^2*d*x^2+d)^2*(a+b*arcsinh(c*x))^2/x^2,x)

[Out]

1/3*d^2*a^2*c^4*x^3+2*d^2*a^2*c^2*x-d^2*a^2/x+32/9*b^2*c^2*d^2*x+2/27*b^2*c^4*d^2*x^3+2*b^2*c*d^2*polylog(2,c*
x+(c^2*x^2+1)^(1/2))-2*b^2*c*d^2*polylog(2,-c*x-(c^2*x^2+1)^(1/2))+1/3*d^2*b^2*arcsinh(c*x)^2*c^4*x^3+2*d^2*b^
2*arcsinh(c*x)^2*c^2*x-32/9*c*d^2*b^2*arcsinh(c*x)*(c^2*x^2+1)^(1/2)+2*c*d^2*b^2*arcsinh(c*x)*ln(1-c*x-(c^2*x^
2+1)^(1/2))-d^2*b^2*arcsinh(c*x)^2/x-2*c*d^2*b^2*arcsinh(c*x)*ln(1+c*x+(c^2*x^2+1)^(1/2))-2/9*d^2*b^2*arcsinh(
c*x)*(c^2*x^2+1)^(1/2)*c^3*x^2+2/3*d^2*a*b*arcsinh(c*x)*c^4*x^3+4*d^2*a*b*arcsinh(c*x)*c^2*x-2*d^2*a*b*arcsinh
(c*x)/x-2/9*d^2*a*b*c^3*x^2*(c^2*x^2+1)^(1/2)-32/9*c*d^2*a*b*(c^2*x^2+1)^(1/2)-2*c*d^2*a*b*arctanh(1/(c^2*x^2+
1)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{1}{3} \, a^{2} c^{4} d^{2} x^{3} + \frac{2}{9} \,{\left (3 \, x^{3} \operatorname{arsinh}\left (c x\right ) - c{\left (\frac{\sqrt{c^{2} x^{2} + 1} x^{2}}{c^{2}} - \frac{2 \, \sqrt{c^{2} x^{2} + 1}}{c^{4}}\right )}\right )} a b c^{4} d^{2} + 2 \, b^{2} c^{2} d^{2} x \operatorname{arsinh}\left (c x\right )^{2} + 4 \, b^{2} c^{2} d^{2}{\left (x - \frac{\sqrt{c^{2} x^{2} + 1} \operatorname{arsinh}\left (c x\right )}{c}\right )} + 2 \, a^{2} c^{2} d^{2} x + 4 \,{\left (c x \operatorname{arsinh}\left (c x\right ) - \sqrt{c^{2} x^{2} + 1}\right )} a b c d^{2} - 2 \,{\left (c \operatorname{arsinh}\left (\frac{1}{\sqrt{c^{2}}{\left | x \right |}}\right ) + \frac{\operatorname{arsinh}\left (c x\right )}{x}\right )} a b d^{2} - \frac{a^{2} d^{2}}{x} + \frac{{\left (b^{2} c^{4} d^{2} x^{4} - 3 \, b^{2} d^{2}\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right )^{2}}{3 \, x} - \int \frac{2 \,{\left (b^{2} c^{7} d^{2} x^{6} + b^{2} c^{5} d^{2} x^{4} - 3 \, b^{2} c^{3} d^{2} x^{2} - 3 \, b^{2} c d^{2} +{\left (b^{2} c^{6} d^{2} x^{5} - 3 \, b^{2} c^{2} d^{2} x\right )} \sqrt{c^{2} x^{2} + 1}\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right )}{3 \,{\left (c^{3} x^{4} + c x^{2} +{\left (c^{2} x^{3} + x\right )} \sqrt{c^{2} x^{2} + 1}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)^2*(a+b*arcsinh(c*x))^2/x^2,x, algorithm="maxima")

[Out]

1/3*a^2*c^4*d^2*x^3 + 2/9*(3*x^3*arcsinh(c*x) - c*(sqrt(c^2*x^2 + 1)*x^2/c^2 - 2*sqrt(c^2*x^2 + 1)/c^4))*a*b*c
^4*d^2 + 2*b^2*c^2*d^2*x*arcsinh(c*x)^2 + 4*b^2*c^2*d^2*(x - sqrt(c^2*x^2 + 1)*arcsinh(c*x)/c) + 2*a^2*c^2*d^2
*x + 4*(c*x*arcsinh(c*x) - sqrt(c^2*x^2 + 1))*a*b*c*d^2 - 2*(c*arcsinh(1/(sqrt(c^2)*abs(x))) + arcsinh(c*x)/x)
*a*b*d^2 - a^2*d^2/x + 1/3*(b^2*c^4*d^2*x^4 - 3*b^2*d^2)*log(c*x + sqrt(c^2*x^2 + 1))^2/x - integrate(2/3*(b^2
*c^7*d^2*x^6 + b^2*c^5*d^2*x^4 - 3*b^2*c^3*d^2*x^2 - 3*b^2*c*d^2 + (b^2*c^6*d^2*x^5 - 3*b^2*c^2*d^2*x)*sqrt(c^
2*x^2 + 1))*log(c*x + sqrt(c^2*x^2 + 1))/(c^3*x^4 + c*x^2 + (c^2*x^3 + x)*sqrt(c^2*x^2 + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a^{2} c^{4} d^{2} x^{4} + 2 \, a^{2} c^{2} d^{2} x^{2} + a^{2} d^{2} +{\left (b^{2} c^{4} d^{2} x^{4} + 2 \, b^{2} c^{2} d^{2} x^{2} + b^{2} d^{2}\right )} \operatorname{arsinh}\left (c x\right )^{2} + 2 \,{\left (a b c^{4} d^{2} x^{4} + 2 \, a b c^{2} d^{2} x^{2} + a b d^{2}\right )} \operatorname{arsinh}\left (c x\right )}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)^2*(a+b*arcsinh(c*x))^2/x^2,x, algorithm="fricas")

[Out]

integral((a^2*c^4*d^2*x^4 + 2*a^2*c^2*d^2*x^2 + a^2*d^2 + (b^2*c^4*d^2*x^4 + 2*b^2*c^2*d^2*x^2 + b^2*d^2)*arcs
inh(c*x)^2 + 2*(a*b*c^4*d^2*x^4 + 2*a*b*c^2*d^2*x^2 + a*b*d^2)*arcsinh(c*x))/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} d^{2} \left (\int 2 a^{2} c^{2}\, dx + \int \frac{a^{2}}{x^{2}}\, dx + \int a^{2} c^{4} x^{2}\, dx + \int 2 b^{2} c^{2} \operatorname{asinh}^{2}{\left (c x \right )}\, dx + \int \frac{b^{2} \operatorname{asinh}^{2}{\left (c x \right )}}{x^{2}}\, dx + \int 4 a b c^{2} \operatorname{asinh}{\left (c x \right )}\, dx + \int \frac{2 a b \operatorname{asinh}{\left (c x \right )}}{x^{2}}\, dx + \int b^{2} c^{4} x^{2} \operatorname{asinh}^{2}{\left (c x \right )}\, dx + \int 2 a b c^{4} x^{2} \operatorname{asinh}{\left (c x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c**2*d*x**2+d)**2*(a+b*asinh(c*x))**2/x**2,x)

[Out]

d**2*(Integral(2*a**2*c**2, x) + Integral(a**2/x**2, x) + Integral(a**2*c**4*x**2, x) + Integral(2*b**2*c**2*a
sinh(c*x)**2, x) + Integral(b**2*asinh(c*x)**2/x**2, x) + Integral(4*a*b*c**2*asinh(c*x), x) + Integral(2*a*b*
asinh(c*x)/x**2, x) + Integral(b**2*c**4*x**2*asinh(c*x)**2, x) + Integral(2*a*b*c**4*x**2*asinh(c*x), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c^{2} d x^{2} + d\right )}^{2}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{2}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c^2*d*x^2+d)^2*(a+b*arcsinh(c*x))^2/x^2,x, algorithm="giac")

[Out]

integrate((c^2*d*x^2 + d)^2*(b*arcsinh(c*x) + a)^2/x^2, x)